Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance.
نویسندگان
چکیده
An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.
منابع مشابه
Microstructure of a Brassica rapa genome segment homoeologous to the resistance gene cluster on Arabidopsis chromosome 4
Genome evolution is a continuous process and genomic rearrangement occurs both within and between species. With the sequencing of the Arabidopsis thaliana genome, comparative genetics and genomics offer new insights into plant biology. The genus Brassica offers excellent opportunities with which to compare genomic synteny so as to reveal genome evolution. During a previous genetic analysis of c...
متن کاملIdentification of Novel QTLs for Isolate-Specific Partial Resistance to Plasmodiophora brassicae in Brassica rapa
Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world. Quantitative trait loci (QTLs) for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10) were investigated using a BC1F1 population from a cross between two subspecies of Brassica rapa, i.e. Chinese cabbage inbred line C59-1 as a susceptible recurrent ...
متن کاملIdentification and Characterization of Crr1a, a Gene for Resistance to Clubroot Disease (Plasmodiophora brassicae Woronin) in Brassica rapa L.
Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus...
متن کاملThe Korea Brassica Genome Project: a Glimpse of the Brassica Genome Based on Comparative Genome Analysis With Arabidopsis
A complete genome sequence provides unlimited information in the sequenced organism as well as in related taxa. According to the guidance of the Multinational Brassica Genome Project (MBGP), the Korea Brassica Genome Project (KBGP) is sequencing chromosome 1 (cytogenetically oriented chromosome #1) of Brassica rapa. We have selected 48 seed BACs on chromosome 1 using EST genetic markers and FIS...
متن کاملA Complex Recombination Pattern in the Genome of Allotetraploid Brassica napus as Revealed by a High-Density Genetic Map
Polyploidy plays a crucial role in plant evolution. Brassica napus (2n = 38, AACC), the most important oil crop in the Brassica genus, is an allotetraploid that originated through natural doubling of chromosomes after the hybridization of its progenitor species, B. rapa (2n = 20, AA) and B. oleracea (2n = 18, CC). A better understanding of the evolutionary relationship between B. napus and B. r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 173 1 شماره
صفحات -
تاریخ انتشار 2006